Necrostatin-1 Attenuates Ischemia Injury Induced Cell Death in Rat Tubular Cell Line NRK-52E through Decreased Drp1 Expression
نویسندگان
چکیده
Necrostatin-1 (Nec-1) inhibits necroptosis and is usually regarded as having no effect on other cell deaths. Here, this study explored whether the addition of Nec-1 has an effect on cell death induced by simulated ischemia injury in rat tubular cell line NRK-52E. In addition, we also investigated the mechanism of Nec-1 attenuates cell death in this renal ischemia model. The NRK-52E cells were incubated with TNF-α + antimycinA (TA) for 24 h with or without Nec-1. Cell death was observed under fluorescent microscope and quantified by flow cytometry. Cell viabilities were detected by MTT assay. The protein expression of dynamin-related protein 1 (Drp1) was detected by Western blotting and immunofluorescence assay. Increased cell death in simulated ischemia injury of NRK-52E cells were markedly attenuated in the Nec-1 pretreated ischemia injury group. Meanwhile, cell viability was significantly improved after using Nec-1. In addition, we also observed that the protein expression of Drp1, a mediator of mitochondrial fission, was significantly increased in simulated ischemia injury group. Increased Drp1 expression in the ischemia injury group can be abolished by Nec-1 or Drp1-knock down, accompanied with decreased cell death and improved cell viabilities. These results suggest that Nec-1 may inhibit cell death induced by simulated ischemia injury in the rat tubular cell line NRK-52E through decreased Drp1 expression.
منابع مشابه
Hypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line
Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions in vitro. MTT assay was used to measure the cell proliferation...
متن کاملFlow control effect of necrostatin-1 on cell death of the NRK-52E renal tubular epithelial cell line
Apoptosis and necroptosis occur in renal tubular epithelial cell (RTEC) death in acute kidney injury (AKI), and may be regulated by several methods. The present study identified a protective effect of necrostatin‑1 (Nec‑1) on RTECs via a flow-control-like effect. The results established a hypoxic‑ischemic injury model of rat NRK‑52E RTECs using tumour necrosis factor‑α followed by ATP depletion...
متن کاملSaikosaponin-d protects renal tubular epithelial cell against high glucose induced injury through modulation of SIRT3.
Saikosaponin-d (Ssd) is one of the major pharmacologically active molecules present in Bupleurum falcatum L, a medical herb against inflammatory diseases in the traditional Chinese medicine. In the current study, we investigated the protective activity of Ssd on diabetic nephropathy along with the underlying mechanisms using renal tubular epithelial cell line (NRK-52E). Our study showed that hi...
متن کاملOverexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose
Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-...
متن کاملFerulic Acid Attenuates TGF-β1-Induced Renal Cellular Fibrosis in NRK-52E Cells by Inhibiting Smad/ILK/Snail Pathway
Renal fibrosis is a common cause of renal dysfunction with chronic kidney disease. Central to this process is epithelial-mesenchymal transformation (EMT) of proximal tubular epithelial cells driven by transforming growth factor-β1 (TGF-β1) signaling. The present study aimed to investigate the effect of Ferulic acid (FA) on EMT of renal proximal tubular epithelial cell line (NRK-52E) induced by ...
متن کامل